Acta Cryst. (1996). C52, 2072-2073

Hydrogen-Bonding Patterns in Substituted Oxines. Redetermination of 8-Hydroxy-7-iodoquinoline-5-sulfonic Acid

T. Balasubramanian \dagger and P. Thomas Muthiah*
Department of Chemistry, Bharathidasan University, Tiruchirapalli 620 024, India

(Received 15 March 1995; accepted 24 July 1995)

Abstract

For the title compound, $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{INO}_{4} \mathrm{~S}$, only a structure derived from photographic data is available in the literature, with $R=0.14$ [Merritt \& Duffin (1970). Acta Cryst. B26, 734-744]. The structure has now been redetermined using diffractometer data. H atoms were located from Fourier maps. The sulfonic group is deprotonated, the proton having migrated to the quinoline N atom which forms intramolecular and intermolecular hydrogen bonds. The protonation of NI causes an enhancement of the internal angle at N1 and asymmetry in the external angles at C 8 . The H atom of the hydroxy group is distal to the ring N atom.

Comment

Derivatives of 8 -hydroxyquinoline (oxine) are known for their anti-amoebic, antibacterial and antifungal activities, which are correlated to their metal-chelating ability (Banerjee \& Saha, 1986). The structure of the title compound (I) was determined as part of our studies on substituted 8-hydroxyquinolines and their complexes (Balasubramanian \& Thomas Muthiah, 1994a,b).

(I)

Fig. 1 shows an ORTEP (Johnson, 1965) diagram of the molecule with the atomic numbering scheme. Bond lengths and angles (Table 2) are in good agreement with those reported earlier for similar compounds. The sulfonic group is depronated, the proton having migrated to the quinoline N atom. The protonation of the ring N atom leads to an enhancement in the internal angle at N1. It also increases the difference between the external angles at C8; a comparison of these angles

[^0]with those of other quinoline compounds is given in Table 3. This can be attributed to the $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{O} 8$ intramolecular interaction. Similar short intramolecular contacts are reported for the structure of 8 -hydroxy-quinoline-5-sulfonic acid dihydrate (Banerjee, Basak \& Mazumdar, 1984). In addition, Nl-H forms an intermolecular hydrogen bond with one of the sulfonic O atoms. There is a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular interaction between $\mathrm{C} 6-\mathrm{H}$ and one of the O atoms of the sulfonic group. The hydroxy group also forms an intermolecular hydrogen bond with one of the O atoms of the sulfonic group. These interactions are summarized in Table 4.

Fig. 1. An ORTEP (Johnson, 1965) vicw of the molecule with displacement ellipsoids at the 50% probability level.

A strong I \cdots [3.039 (4) \AA A interaction exists between the I atom and one of the O atoms of the sulfonic group related by an a translation, which was also identified from the earlier photographic data ($3.07 \AA$).

Experimental

The title compound was recrystallized from water.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{INO} \mathrm{I}_{4} \mathrm{~S}$
$M_{r}=351.11$
Monoclinic
P_{1} / c
$a=9.5704(9) \AA$
$b=13.364(2) \AA$
$c=8.748(2) \AA$
$\beta=108.834\left(100^{\circ}\right.$
$V=1059.0(3) \AA^{3}$
$\mathrm{Z}=4$
$D_{x}=2.202 \mathrm{Mg} \mathrm{m}^{-3}$

$$
\begin{aligned}
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 15 \\
& \text { reflections } \\
& \theta=8-13^{\circ} \\
& \mu=3.218 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Thin needle } \\
& 0.35 \times 0.15 \times 0.125 \mathrm{~mm} \\
& \text { Yellow }
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer $\omega / 2 \theta$ scans
Absorption correction: none
1497 measured reflections
1401 independent reflections 1190 observed reflections $[I>2 \sigma(I)]$

$$
\begin{aligned}
& R_{\text {int }}=0.0262 \\
& \theta_{\max }=22.98^{\circ} \\
& h=-10 \rightarrow 9 \\
& k=0 \rightarrow 14 \\
& l=0 \rightarrow 9
\end{aligned}
$$

2 standard reflections frequency: 60 min intensity decay: negligible

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=-0.096 \\
& \Delta \rho_{\max }=1.033 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.702 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0298$
$w R\left(F^{2}\right)=0.0689$
$S=1.097$
1401 reflections
163 parameters
H -atom coordinates refined
with $U=0.05 \AA^{2}$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0512 P)^{2}\right. \\
&+0.1978 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

8-HQ-5-sulfonic acid dihydrate \dagger	122.7	11.0
This work	123.6	9.3
N1 unprotonated		
8-HQ \ddagger		
5-Chloro-8-HQ \ddagger	117.9	2.0
	117.5	1.9

* Gerald et al. (1984). † Banerjee, Basak \& Mazumdar (1984). \ddagger Banerjee \& Saha (1986).

Table 4. Hydrogen-bonding geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdot \cdots \cdot A$	D-H	H..A	D. . A	D-H. ${ }^{\text {A }}$
N1-H1...O8	0.83 (8)	2.22 (6)	2.649 (6)	112 (6)
C6-H6..O53	1.03 (7)	2.44 (8)	2.821 (8)	102 (5)
N 1 - $\mathrm{H} 1 \cdots \mathrm{O} 3^{\text {i }}$	0.83 (8)	2.00 (8)	2.737 (7)	153 (7)
$\mathrm{O} 8-\mathrm{H} 8 \cdots . \mathrm{O} 2^{\mathrm{ii}}$	0.83 (7)	1.86 (7)	2.681 (6)	170 (7)

Symmetry codes: (i) $x, y, z-1$; (ii) $-x,-y,-z$.

Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Software used to prepare material for publication: SHELXL93.

The authors thank the Regional Sophisticated Instrumentation Centre, IIT, Madras, India (sponsored by the Department of Science and Technology, New Delhi, India), for the data collection. The authors also thank the University Grants Commission, New Delhi, India, for a Teacher Fellowship (TB) and a Career Award (PTM).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: VJ1024). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU , England.

References

Balasubramanian, T. \& Thomas Muthiah, P. (1994a). National Symposium on Cellular and Molecular Biophysics, Chandigarh, India. Abstract P-56.
Balasubramanian, T. \& Thomas Muthiah, P. (1994b). 4th Eurasia Conference on Chemical Sciences, Kuala Lumpur, Malaysia. Abstract M-15.
Banerjee, T., Basak, K. \& Mazumdar, S. K. (1984). Acta Cryst. C40, 507-509.
Banerjee, T. \& Saha, N. N. (1986). Acta Cryst. C42, 1408-1411.
Gerald, A., Bottomley, G. A., Carter, A. M., Engelhardt, L. M., Lincoln, F. J., Patrick, J. M. \& White, A. H. (1984). Aust. J. Chem. 37, 871-877.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Merritt, L. L. Jr \& Duffin, B. (1970). Acta Cryst. B26, 734-744.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Table 3. Comparison of the angle at N1 and the difference in external angle at C 8 of $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{INO}_{4} \mathrm{~S}$ with derivatives of 8-hydroxyquinoline

Angle at Nl

> Difference in external angles at C8
122.4
123.6
U_{eq} 0.0277 (11) 0.0305 (13) 0.0261 (12) 0.0224 (11) 0.0260 (3) 0.0357 (9) 0.0370 (9) 0.0433 (11) 0.0270 (12) 0.0340 (2) 0.0230 (II) 0.0222 (11) 0.0229 (12) 0.0234 (11)

Table 2. Selected geometric parameters ($\AA,^{\circ}$)

S5-C5	$1.776(5)$	S5-O52	$1.456(4)$
S5-O51	$1.437(4)$	I7-C10	$2.080(5)$
S5-O53	$1.446(4)$	O8-C8	$1.351(6)$
C2-N1-C9	$123.6(5)$	O51-S5-C5	$107.7(2)$
C6-C5-C7	$120.1(5)$	O53-S5-C5	$104.6(2)$
C6-C5-S5	$119.1(4)$	O52-S5-C5	$105.3(2)$
C7-C5-S5	$120.7(4)$	O8-C8-C10	$125.6(5)$
O51-S5-O53	$113.4(3)$	O8-C8-C9	$116.3(5)$
O51-S5-O52	$111.9(2)$	C8-C10-I7	$119.7(4)$
O53-S5-O52	$113.1(3)$		

N1 protonated
Bis-8HQ chloride
Bis-8HQ tetrachloride ferrate(III)*

[^0]: \dagger Present address: Department of Physics, Nehru Memorial College, Puthanampatti 621007 , India.

